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I. Introduction and Pn. ncipa l Resul ts .

Let X be a real or complex R i r ~ ac~t sp o.e. We study the l inear  Volterr a equation
a

( 1 . 1 )  u ( t )  ~ a * Au (t )  f t ’ . (() t .
~
- T; T > 0 )

t
where a ~ Au(t~ f a ( t  - s )Au (s )ds , a is a given  real ):ernel , A is a bounded or uch. unde’i

0
linear operator from X to X and I is a a iv o n  function with values in X.

An Impo rt an t  and perhaps the i~~~ st useful special case of (1. 1) for certain app lications

is the linear equat ion

(1 .  Ia) u) t i  4 a * Au(t )  U
0 

4 a * q( t ~ (0 < t < T; T > 0)

where u0 
X and the given funct i ii g L ’(0 , T;X ~. We will establish condi t ions on the

kernel a and the operator A which Insure that the respective solutions operators for (1. 1)

and (I. Ia) preserve a convex cone in X (see Theorems ~ and 1i . We then consider in

SectIon 3 a non l inea r  pr u l o r ~ of the t~~ in (1 .  I) in which A is a m-accret ive operator.

rinally, in  Section 4 we discuss three examples t~ illustrate the theory . Example 3 was

proposed to us by Professor L. A. Peletier. We are grateful to Professor M. G. Crandall for

discussing Example 3 with us.

We will suppose throughout that the following assumptions are satisfied .

(H )  A : D(A ) C X — X and -A generates a linear continuous contraction semi-group on X ,

which we shall denote by e (
~ > 0) .

(H ) a L’(O ,T:IR )
2 ii:

H L’ T X )  - 
ISP

( ~) 1 (0 , ,
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Definition 1. We 
~~~ ~~~ 

u : [ 0 ,T1 -
~ X Is a strong solution of ( 1 . 1) 11 U C L1

(0 ,T;X) ,

u(t)t D(A) a.e. on [ 0 ,T1, Au L ’(O ,T;X) , and u satisfies (I.!) a.e. 
~~ 

[o ,T).

We denote the norm in X by ii~ II. It B Is a linear unbounded operator on X , we

use the notation XB 
- D(B); if u XB, its graph norm is denoted by lu - Ilu II IlBu 0 .

B
Of particular interest are the spaces XA and X where A satlsJes (H 1 ). Recall that

A
the space XA Is dense in X and X 2 is dense in XA

; see [ 15 , Theorem 2. 9 , pg. 8 ) .
A iIf u is a strong so lution of ( 1 . ii, Definition I states that u t L (O ,T;XA

).

To discuss solutions of ( 1 . 1 )  and (1 . la) we make use of the operators R and S defined

respectively by the equations

(R )  u ( t)  + a * Au(t) a(t)x (x € XA ; 0 - t < T)

(S) u(t) 4 a * Au(t) x (x ~ XA ; 0 < t < T)

It follows that under the assumptions of Theorem 1 below , equations (R) and (S) each have

a unique strong so lution which we write respectively as R(t)x and S(t )x. While the

operators R and S are so defined for x XA , Theorem 1 together with a density argument

shows that R and S can be extended uniquely as bounded operators in L1(0 ,T;X) and

C(0 ,T;X) respectively.

Our main resuit for the linear case is

Theorem I. L~~~(H 1
) , (H

2
) be satisfied.

(i) i&t Vi~ kernel a satisfy the following condition

~~~ every X ~ 0, the unique solution r(t ,X )  L’(O ,T;IR) of the ar equation

fresolvent equation)
(H 4 )

r(t) 4 Xa * r(t ) a(t) (0 � t < T’

satisfies r(t ,X )~~~0 a.e . ~~ [0 ,T].

Then for every x 
~ 

XA, the ~q~ation (RI has a unique strong solutioa which we denote ~~
k(t)x , 0 < t  < T. Moreover, ~~ almost every t c [0 ,T) ,  Lh~~~ exist s ~ positive measure

on P~ , depending Q~~~ on the kernel a , ~~~~~~~~

-2-



I R(t)x f e xd
~~

(
~

)
0

(1.2) t [ O ,T] a .e .

a(t )  5 dp~(a)
0

and the following Q~~~~ t~~ are satisfied:

(1.3) HRx II ~ lla H 1 lix Ii
L [0 , T;Y] L t O , T;IR I ~

where Y X or X or X and
A A n

(1.4) IIR* vii < f l a I l  1 Ilv U ( l < p < ~~ )
L~[O , T:Y] L f O ,T;IRJ L~ [0 , T;Y)

(ii) Let the kernel a satisfy the assumptions (H
4

) and :

~~~ 
Le)~ ~ 0, ~~~ unique solution s(t ,X ) (absolutely continuous or [0 ,T ) )

of the scalar ~~uation
(H 5) s (t ) 4 Xa * s(t ) 1 (0 < t < T)

s a t i sf i e s  s(t , X ) .? O , ~~~~~~~~

Then for ~y~jy x the equation (S) has a unicue stronq solution which we den’~te

~
y S(t)x , 0 < t  <T .  Moreover, for every t C (0 , T j ,  there exists a probability measu~~

~~ 4~pcnding ~~~~ on the kernel a , such that

(1.5 ) S(t )x = 5 e
~~~

xd r.
~

(u) (t € [0 ,T])

and ~~~ fol1ow~~~ estimates hold:

(1.6) llS(t)x ll,~. < lix ll,~.

(1.7) US * V IICIO T ~ lv ii 1,yj L [ 0 , T;YJ

where Y = X  or X or XA A~
Remark 1.1. If a ~ I, then R(t) S(t) = e tA and = = the Dirac measure at t.

Assumptions (H4
) and (H5

) require some clarification.

Proposition 1. (i) ~~~ (H
2

) k~ 
sat isf ied ~~~ ~~ a C(0 ,T) ~~~ a(t) > 0. j j  log a(t I j~

-3-



convex on (0 ,T~ then (H
4~ is satisf ied on [ 0 ,T) .

(ii) ~~~~~~ (H 2
) be ~a t i s f i e ~J and let a(t) be nonnegative and nonincreasing ~~ (0 ,T) .

Then (H 
5

) is sat isf i ed on [ 0 , T) .

While the content of Prop: slt ion 1 is implicitly contained in the literature (see (7]  , [8~ , f l u

and [ l4~ ) , we give the pro ! in Appendix 1. In the literature the results are for t on the

infinite inte rva l a o l  unior slightly stronger assumptions.

Remark 1. 2. It is useful to observe that

t
s(t ,X )  = 1 - X f  r (~ ,X )da

0

where r and s are defined in (H4 ) and (H 5
) respective ly. This follows from the fact that

a * s - I * r , toget~ er with the equation defining s. Thus if (H
i) and (H ) are satisfied

on [ 0 , T] for every T > 0 then 1
T 

r(t , X )dt < 5 a (t )dt and 0 < 5 r(t ,X )dt ~ ~~~, X > 0;

in particular , r(t ,X )  L (0 ,~~) , \ >0 .

Remark 1. 3. If a (t ) satisfies (H2
) and is completely monotoriic on (0 ,T) , then a

satisfies (H
4

) and (H
5

) , see [7] , [14]

Remar k 1.4. We also note that , if a(t) et
, then (H4

) is satisfied but not (H
5
). However ,

(H
5

) does not imply (H
4~. To see this, take a(t) = ~ 

1’ Then by Proposition 1

(ii) , (H
5

) is satisfied . But for ~ = 1, as shown by Levin [12; example following

Theorem 1.4] , r(l ,t) < 0  for some 1 < t < 2.

Theorem I Is used to deduce the following resu lts about solutions of equations (1.1) and (I.la) .

Theorem 2. (i~ Let the assumptions (H
1) , (H

2
) , (H

4
) 

~~~ 
g 

~ 
L’(0 ,T;XA ) ~~ ~atis1ied. Then

~~ ~~Y~112~
(1.8) u(t) + a * Au(t) a * g(t) (0 < t < T)

has a unique ~~~~~~~~~~~~ solution u qiven ~~
(1.9) u = R * g ,

where P ~~ ~~~ so lution of equation (R) ~ive~ ~~ (1. 2) , ~~~ 
(
~~ 

(1. 3))

(1. 10) Hull ~ fla i l Hg II
L (0 , T;X) L (0 ,T:IR ) L (0 ,T .X)

-4-



(ii) Let the assumptions (H
1

) , (H
2

) , (H
4~, (H

5
) and

(f  = + ~~~~~ f1 IY(0,T;X 2) 1 < p  <~~
(H6 ) 

~~ and f 2 Wi ’1(0 ,T;XA
) , ~~~~~ Is the usual Sobolev space ,

be satisfied. Then equation (1.1) has a ~~~~~~ strong solution u = u1 
+ u

2 
where

(1. ii~ u1(t) f1
(t ) - R * Af 1

(t ) a. e. on [ 0, T)

and

(1. 12) u2
(t) = S(t)f

2(0) F S * f~ (t) t C [ 0 ,T]

where S is the solution of equation (S) given ~~ (1. 5); moreover there is a constant

c = c ( T ) >0  such that

(1.13) flu 
~ 1 < c{ h f 1 II + ~~ 1L(0 ,T;X) L ( 0 , T;X

A
) 2 wi

~ (0 , T;X)

Remark 2.1. If A is any bounded linear operator , - then X = X~ = X 2 and the existence

and uniqueness of so lutions of (1.1) , wIth only a C L’(O ,T;IR ) , f L (0 ,T;X ) is well-known.

In the case when A is not bounded, existence and uniqueness resu lts for solutions of (1.1)

have been obtained by Friedman and Shlnbrot [ 9 ] ,  even for the case A (t ) where A(t )

generates an analytic semi-group under different conditions both for the kernel and the func-

tion f with, however , different objectives than ours .

Remark 2.2. Formula (1.11) is well-known when A is a bounded operator; formula (1.12)

has also been employed in [ 8 ] ,  [9 ]  where S is called a fundamental solution of (1.1).

Remark 2 . 3 .  In the unbounded case we may define a weak solution of (1.1) as follows : there

exist sequences {un
) , Un

} where each f ~ L1
(0 ,T;X) and each U is a strong

solution of (1.1) with f such that 
~n 

-. f and un
- u  in L1(0 ,T;X). From (1.13) it

follows that if f L’(O ,T;XA
) + W”1(0 ,T;X ) , then equation (1.1) possesses a unique weak

solution. (Note that L’(O ,T;X ~
) is dense in L’(O ,T;XA

) wi th respect to the norm in

L’(O , T :X) ;  s imilar ly  fcr Wi’ 1
(0 ,T;XA ) in Wi ’1(0 ,T;X). A similar remark applies to (1.8).

Remark 2 .4 .  If f1 = 0, then conclusion ( 1.13) can be strengthened to:

(1.14) flu 
~C(0 ,T;X) ~ C lIt 

~0 
‘w1’~ o,T;x

-5-



kmark a. c~ Since the kernel is real , the case when X is a real Banach space can be

treated as a special case of the complex case: If X X + IX, the operator

A(x + ly) :~ Ax 4 lAy satisfies (H
1

) whenever A satisfies (H
1
). Therefore, we can restrict

ourse lves to the complex case.

Remark 2. 6. If a(t) 6 (t)  where 6 ( t )  is the Dirac measure , then (1.1) reduces to

u(t) 4 Au (t )  - f ( t ) , and

(1. 15) S(t) = (I + A) 1 
= f e ~~~ e~~ a~ [ 19; p. 240]

The kernel a(t) 6 (t) does not satisfy (H2
). However , 6(t) can be approximated by

kerne ls a (t) - e ~ (a ~,~0
f

) ;  each a satisfies (H ), (H ), (H ) so that a(t) 6( t )

Is a limiting case of our theory and the corresponding measures ~~~ approach the measures

v~ in (1.15) of density e~~
’, independent of t , as a- -.

By (1.2) and (1. 5) , R(t) and S(t) are respectively positive and convex ‘ combinations

of contraction soc~igroups ~~~~~ From this observation we obtain the following applications

of Theorems 1 and 2 which we state as Theorems 3 ~nd 4.

Theorem 3. Let (H
1

) , (H
2

) , (H
4

) be satisfied. ~~~ P ~~ ~~. closed convex ç.~~~ ~~ X , ~~~~

that

(1.16 ) (1 + XA )~~P C P  for every X > 0 .

Then

(1.17) R( t )PCP a.e . on [0 ,T]

Moreover, if In equation (1. 8) g(t) P a. e. , ~Jj~~ Q~ 
solution u g.~ (1. ~) j j~ P a. e. on

[0 , T] .  j j~~~(l.1) f E  L’(O ,T;X
A

) and Af(t)  C P a . e .  ~~ (0 ,T J ,  ~~~
(1.18) f ( t )  C u(t) + P a.e. on [ 0 ,T]

where u is the (weak) solution of (1.1); in particular, 
~
j  P ~~ ppsitive ~~~~ ~~ X , ~~~

i~ eciuivalent 
~~ ~~ ‘ maximum principle ”:

(1.19 ) u(t) < f(t) a.e. on f 0 ,T)

-6-



The proof of (1.17 ) in Theorem 3 is an immediate consequence of formula (1.2) for the

operator R, together with the standard fact that assumption (1. 16) implies that e~~
A maps

P into P for every ~ ~ P~ . Having established (1.17 ) , the remaining conclusions of

Theorem 3 f o l )c . v  from the representation formula (1.11).

Remark ~.1. If one studies equation (1.8) in the scalar case , one takes A = X ~‘ 0  to

sat isfy (H
1
). If is satisfied and if P JR

4 
, then the condition (H

4
) is necessary an- I

sufficient in order to guarantee that the solution u of (1. 8) satisfies u(t )  > 0 fur ever~

g > 0. Thus one cannot hopa to improve on condition (H
4

) in the abstract Ca~~€ .

Theorem 4. Let (H1
) , (H

2
) , (H

4
) , (H

5
) ~~ satisfied. ~~~ P ~~ ~ closed convex Li ~f3 X

satisfyi ng (1.16). Then

(1.20) S(t)P C P  for 0 < t < T

(1) Moreover, if u0 C P and if g(t) C P a. e. in equation (1. Ia), then the solution u of

in P for almost every t e [ 0 ,T].

(Ii) If in (1.1) , f C w’1’’[ 0,T;X] where f (0) € P ~~~~~~~ f (t) P a .e. 
~~ 

[ 0 , T] ,

~~~~ (~~~~~~ ) solution u ~f (1.1) fl~~ ~~ P ~~ every t C [0 ,T] . (The last assert ion holds

for any closed convex set P in X).

(iii ) Moreover , ~ X j~ a real Hilbert ~pace, and if the function ‘p : X —. [0 ,~~] is convex ,

lower semicontinuous, proper and satisfies

(1. 21) ‘p((I + X A ) 1x) < ç’(x) for eve~~ X > 0 and every x X

then

(1. 2 Z )  ç(S(t)x) < q’(x) ~~ every t [ 0 , T] and ever~t X C X

The proof of (1. 20) in Theorem 4 follows from formula (1. 5) for the operator S,

together with the observation that assumption (1. 16) implies that e~~~ maps p into p

for every ~ JR~ . Then conclusion (I) of Theorem 4 follows from ( 1.9) , (1.12) with

f(t) u0, and the fact that the operators R and S each map P into P. Similarly ,

conc lusion (ii ) follows from (1. 12). To establish (iii) recall that assumption (1. 21) implies t~oit

for every w >O , X >0 , X C  X

-7-



where is the Yos i~I:i approximation of q’, [ 3 , ProposItion 2. 11) . Then (1. 22) follows

from (1. 5) , Jensen ’ s inequality and sup ~~ (x) = q ’(x ) , ( 3 , Proposition 2.111.
)
~ >0

Remark 4 .1 .  Conclusion (ii) of Theorem 4 is an abstraction of a result of Levin [ 12; Lemma 1.3]

ir J~~. h i s  result is

‘.Let d L~~~(0 , -‘ , a(t ;  nonnegative nonincreasing on (0 ,~~). Let

f C[ 0,oC ) be nonnegative and nondecreasing on [0 ,~’~). Then the

solution x of the equation

x (t) + a * x(t) = f(t) (0 < t < ~
)

satisfIes 0 < x (t) < f (t ) .

This result is also an immediate consequence of Proposition 1 (ii ) and of the formula

t
x(t) = S(t)f(0) + 5 S(t — a )df (a )

0

Lev~n~~ proof in [12) is different; he improves his result by a smoothing argument which

permits him to remove the assumption f CE 0,x ) .  This is also evident from the preceding

formula.

In Theorem 4 (1i both assumptions (H4
) and (H

5
) are used . It is of

interest to note that in the abstract case the assumption H
5

) (which is satisfied when a

is positive and norilncreasing ) is not sufficient to insure that S maps P into P when

condition (1. 16) is satisfied . To see this we consider the following example in 1R2.

Let

( if

( 1 . 2 3 )  a(t )
if t~~~l ,

and ;onsider for a > 0 the operator A defined by

(1. 24) A = uTA U  where

/ 1 0 / 1  1

l 4 a  
~~~~~~~~~~ 1

-8-



For every a > 0, the real matrix A is symmetric and positive definite . Thus -A

generates a contraction semigroup on~~JR
2, w ith the usua l Euclidean norm . If P is the cone

IR~ = ((x , y) iF~ : x 
~ 

0 , y > 0) , then It is easily checked that (I + k A ) 1P ~ P for every

a > 0 , k > 0, so that (1. 16) is satisf ied .

Corresponding to the kernel a defined by (1. 23) , the function s(t , \) of (H 5) is

I c  If 0 < t < 1
(1. 25) s(t , ~~~ 

= 
-

~~ -x(t - 1)
~ e 

t + )s(t _ l)e if 1 < t < 2 ,

and clearly (H
5) is satisfied on the interval 0 t ~ 2.

We next compute the operator S corresponding to A .  Consider the equation

(1.26) u + a * Aau x , x JR 2

By setting v Uu, y = Ux equation (1. 26) is transformed to the equivalent diagonal form

(1. 27 ) v -f a * A v y
a

which by the definition of s(t , k) in (Fl 5) gives the solution

f v
1

(t )  s(t , l)y 1 / s(t , 1) [x
1 + x

2
]

v ( t ) = t  =

~ v 2(t) s(t , I + a)y
2 

\ s(t , 1 4 a)[ — x
1 + x 2 )

Thus the solution of (1.26) is

s(t , 1)[ x 1 + x~ J — s(t , + a)[ —x 1 + x
2 J

s (t , l) [ x 1 + x 2 j + s(t ,l+a) [-x
1 

+ x 2 J

and the operator Sa(t )  is

f s(t , I) + s i t , I + a) s(t, 1) — s(t , I + a)

S ( t ) = — ’Ia 2
~~ s(t , 1) - s(t ,l + a )  s(t ,l) + s(t , l + a )

To show that (H~ ) is not sufficient to prove that S maps P = R into P, it is sufficient

to have s(t , 1) - s(t , 1 + a) < 0 for some t > 0 and for some a > 0. Observe that from (1 . 2’)

(1. 28) (t , k) = _e
_
~~

t ’
~~

) [ k(t — 1) 2 
— (t — 1) + te X ) for

1 t ~ 2, k > 0. Thus - (I + j~
, I) > 0, so that there exists a > 0 such that 

-

—9—



s(l + j-
~ 

, 1) — s( l + , 1 + a) < 0, whIch establishes the claim.

We note the above argument also shows that (H 5) does not imply that s(t , k) is

completely monotonic in k .  (See remarks following Lemma 2. 1 below).

-10-



2. Proof of Theorem s 1 and 2.

We will prove Theorems 1 and 2 in two main ste ps. We f i rst  consider the case when

A Is a bounded operator . In this case , by Remarks 2 . 1 and 2 .2 , it suff ices to prove the

representation formulas ( 1.2) and (1. 5); for , having these one immediately has the est iu. m~o3

(1. 3), (1. 4) ,  (1. 6) , (1.7 )  as well as the conclusions of Theorem ~~~. We then consider the

case when A is an unbounded operator as a limiting situation of the boun ied case usin :

the Yosid~ approximation of A. The case where A is bounded is further div idei into t .~.

parts :

L~~~~ai~Lcase. We 
require the following prelimina ry result.

Lemma 2. 1. If a(t) satisfies assumptions (H 2
) , (H4), ~~~~ r(t , ~), defined in (H 4 ), i.=

comple~ç~jy monotonic in >~ ~~ 0 < ~ ~~ t [0 , T) a.e. j~ moreover a (t )  ~~s1ij~~

(H5), ih~ii 
s(t , x), defined in (H 5

) ~~ ç~~ pj.~je l monotonic j~ k fgj 0 ~~ 
\. <

~~~~

ever y t [0 ,T ] .  
-

.E~~�J of Lemma 2. 1. We consider the equations

( 2 .1 ) r(t , x) + Xa * r ( t , )~) a(t )

( 2 . 2 ) s(t , x) -I- Xa * s(t , x) =

of assumptions (H 4
) and ( H5

) respectively with k complex rather than X > 0. Let E

denote the spaces L1(0 , T ;mE) or C(0 , T;~~). Define the operator K : E -. £ by

K ( t ) = a * x(t) (x C E). K is a bounded linear o perator with spectrum a(K) = 0. Thus

for u E, the function v defined by v(~ ) = (1 + KK) 1u, X C, is an entire function

of X with values in E. By differentiation and induction one has the formula:

( 2 . 3 )  (_ 1)
fl 

~~~~~~~ 

v( X ) = n! K~ v( X ) ,  n = 0 , 1 , 2 , . . .

w here the operator K
~ 

is defin ed by

( 2 . 4 )  K~ K(l + XK) 1

We claim that

— 1 1 —



t
(2. 5) K~x(t ) = f r(t — s , k)x(s)ds (x C E)

0

To prove (2. 5) take the convolution product of both sides of (2. 1) by x L
1
(0 , T;~~),

obtaining

r(t , X) e x(t) + Xa r(t , k) * x(t) = a * x(t)

Thus u
~

(t ) = r(t , \)  * x(t) satisfies the equation

u~(t) + >~a 
~ 

uk(t ) = a * x(t)

by uniqueness of solutions of this scalar equation and by the definition of Kk in (2. 4)

this show s that u~ (t) = Kkx(t ) and proves (2. 5).

For 
~
‘. � 0, assumption (H4 ) implies that the operators Kx map the set of non-

negative real funct i ons in E into itself. To prove the first assertion of Lemma 2.1,

consider V
a

(X )  = (I + ~K) ’a; then v ( ~ )(t ) = r(t , k) a .e . in [0 , TJ , r(t , k) > 0 by (H4
),

and by (2. 3), (2.5) (_ 1) fl 
~~ r(t, k) ~ 

0 a.e. in [0, TJ for 0 < X < ~~~ . To prove the

second assefflon of Lemma 2 .1, take v1(~ ) (I + kA)~~~l; then v(~ )(t) = s(t , x) ~ 0 by

(H 5
), and complete the proo f as above . This completes the proof of Lemma 2. 1.

It should be noted that the second assertion of Lemma 2. l is stated by Friedman [8 ,

lemma 2 . 7)  under only the hypothesis that a > 0 and nunincreasing . However , his

proof also uses ( H4 ). (He should also require (H4
) for his Theorem 5.2 , p. 144). To see

that (H 5) is not sufficient for the complete monotonicity of s(t , x) with respect to k,

we consider again the kerne l a defined in (1.23). The corresponding function s(t , k) is

given by (I. 25) and s(t , k) > 0, for 0 < t ~ 2. However, as seen from (1. 28 ),

dX~ 
+ 

l0~~
l >

We shall next obtain representations of the entire functions r(t , )..), s(t , k) for

Re >~ 0.

By Lemma 2. 1 and Bernstein ’s theorem [18) , there exists a positive finite measure

on 1R such that
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r(t,X ) = f e d ~~(~ ) (ReX > 0; t [0 ,TJ a .e.)

(2.6)

a(t) f d
~~
(w) (t [0 ,T) a .e .)

Similarly, using s(0 ,X ) = 1, there exists a probability measure on such that

(2.7 ) s(t ,X ) = f e~~
X

dv t (~ ) (Re X >0 ;  t [0,T j )

Thus ( 2.6) and (2.7) correspond to formulas (1.2) and (l.5).ln the scalar case.

(ii) A is a bounded operator satisfying (H
1). By a standard argument equations (R) and ~S)

possess for every x X a unique solution which we denote by R(t)x and S(t)x respec-

tively. We first prove the representation formulas (1. 2) and (1. 5) for the opera~ rs A
~

def ined b y -

(2.8) A = C I + A  ( l > c > 0 ) .

Define the operators R and S
~ 

by the formulas

(2.9) R
~
(t)x = 

~f 
f r(t ,X ) (XI — A ) ~~xdX (0 ~~t ~ T)

(2.10) S (t)x = 
~~~

— 5 s(t , X )(X I — A ) 1
xdX (0 ~ t ~ T)

whe re x c X, r(t,X), s(t,X) are defined by (2.1) and (2 .2 )  respectively for X C U~. C
~ 

is

a c losed contour In the com p lex x plane, orl~nted counterc lockwise , consisting of a

f in ite number of rectifiable Jordan arcs and such that C
~ 

= aU g , where U
~ 

is an open

set containing the spectrum of A
~
. The integral in (2.9 ), (2.10) are the usual Dunford

integrals [19 , p. 225 ) .  It is shown by Friedman [8 , Theorem 3.1 1 that S5(t)x defined

by (2.10) is the unique solution of equation (S) with A replaced by A
~
. An entirely

analogous argument show s that R (t)x defined by (2.9) is the unique solution of equation (R)

with A replaced by A
~
.
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We next observe that the spectrum a(A ) is contained In the half plane Re X >

4 and, if < 1 , in the ball of radius I + HA Il . Thus we may choose C to be the rectangle

bounded by the segments joining the points (
~ 

— 1 (2  + IA II )) , ((2 + IIA II)(l — i ) ),

((2 + IIAII)(l + i )), (
~ + t(2 + [ (A l l ))  oriented counterclockwise. Using the representation

(2 .6 )  in (2.9) under assumption (H4 ) and the representation ( 2 . 7 )  in (2. 10) under assumptions

( I~I4), (H
5
) we obtain

0° -~A
(2. 11) R (t)x = f e ~x d

~~
(
~

) (x X)

0° -wA
(2. 12) S ( t )x = f e t

x dv
1
(~~) (x X)

The proofs of (2.11) , (2.12) fo llow from a theorem on thC Dunford integral [19 , p. 226 ) ,

together with Fubini ’s theorem and the definition of the operator e by

e~~
A
tx = 

~~ ~ e~~~
’
~u - A Y ~

1xdX (x C X)

Thus formulas (2.11), (2. 12)  establish (1.2) and (1. s ) respectively with A = A
~
. We next

+let t -. 0 . We first show that

(2.13 ) P.
~

(t)x -. z(t) = 5 e ’~ x d~~
(
~

) in L
1(0 ,T;X~

We then show that z(t) is the unique solution of equation (R) . Substituting (2.8)  in (2.11)

we have

1JR5(t)x - f e ’~ x d I&~
(w) ii = II f (e~~~ - l)e

~~~
d
~~
(w) II

Therefore , by a simple application of Lebesgue ’s dominated convergence theorem

~~~ 
11R5(t)x - f e ’ x d

~
&t (

~
) f l  = 0 a.e. on [0 ,TJ

Moreover , since e~~
)A is a contraction semlgroup, we have
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(2 .14)  iI R
~

(t)x II < 5
0° 

lle t
~e ld~~~) lx Ha( t )  a ,e .

Since a C L 1
(0 , T), another application of Lebesgue ’s t heorem establ ishes (2 .  13).

We next show that the function z defined in (2. 13) is the unique solution of eq..~a ’ . - -

We know that R (t)x is the unique solution of the equation

( R )  u (t) 4 a ~ Au (t) + ca * u (t) = a(t) a. e.

Observe that by (2.14)

T
II u Ii < lix II 5 ä(t)dt

L ( 0 , T;X) 0

Consequently ca * u — 0 in L
1 (O , T;X) as c 0~ Since u — z in L

1
(0, T;X) is

c -~~ 0+, one has that z(t) satisfies equation (R) a .e.  on [0 , T J .  By uniqueness .

z(t) = R(t)x , estab lishing (1.2).  An entirely similar argument with L1
(0 , T;X) replaced by

C(0 , T;X) and assuming (H 5
) establis hes (1. 5).

A an unbounded operator satisfying (H
1). Using the assumptions (H1), (H

2), (H 4
) we det inE

the operator R by the re lation

(2 .  15) R( t)x = 5
0° 
e~~

Ax d
~~

(
~

) (x X)

for those t e [0, TJ for which fL
1
(i~) is defined , and define R(t )x = 0 (x C X) otherwise.

Similarly, using assumptions (H1
), (H2), (H4), (H 5

) we define the operator S by the r e l a t o ,  n

( 2. 16) S( t )x = 5 e~~
Ax dv t (

~
) (x X) , t [0 ,T)

The meas ures and v~ in (2. 15) and (2. 16) are defined in (2 .6 )  and ( 2 . 7 )  respect ively.

We point out that the operators R and S will be identified with the operators R and S

of Theore m 1 after Lemma 2. 5 below. By (Fl1) and elementary sernigroup theory R and S

are bounded operators In X, XA, and X 2; we have the estimates:
A
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(2.17) lF~(t)x II < a ( t ) Hx ) (t [0 , TJ; x C X)

4 and also

(2.18) ll~(t)x ll ~ lix Il ( t o  [0 ,T J ; x X)

Define

= (I + XA)
1 

(K � 0)

and the Yosida approxiniat lon A.~ of A by

Ax 
= ~~(I- 

~~ 
(K >0) ;

recall that by (H1
) J>~ 

is a contraction on X for every K � 0 and that, see [19; Cor. 2,

p. 241) where the notation i different,

(2.1 9) A
~

x = JX
Ax = AJ

~
x (x ( X

A
)

We also need ~o define the operators R
~ 

and SX 
respectively by the relations

(2.20) R
X

(t)x = f
0°

e~~
Ax x d ~ t

(~ ) (K >0 ) ,

for those t [0 , TJ for which ~~(u) is defined and R~(t )x = 0 (x X) otherwise, and

(2.21) S
X

(t )x = f e ~~~~ x dv
t
(w) (x > 0 , t o [0 ,Tj ,  x C X)

Since Ax is a bounded operator for every K > 0, it fo llows from uruqiieness In the bounded

case and from part (ii) That R
~

(t)x R
x

(t)x for t C [0 ,T j a .e. and x € X, where

R~(t)x is the unique solution of equation (R) with A replaced by Ax~ 
Similarly,

S
~~

(t)x S
~

(t)x for t C [0 , TJ and x C X, where S
~

(t )x is the unique solution of

equation (S) with A replaced by A .  We shall use the following properties of the operators

R, RX , S, Sk .

Lemma 2.2. Let (H
1
) , (H

2
) , (H

4
) )2~. satisfi ed. R ~~~ 

R
~ ~~~~ . defth~~ ki (2. 15) ~nct

(2 .  20) respectively . Then

(2.22) Rx C L
1
(0,T;X) (x C X)

—16 —
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(2.23) lirn 
~ 

l i x  — R
~

x
~ 1 

0 (x X)
X - 0  L(0,T;X)

~i over, ~j  v L’(0 , T;X) , ~~~ ~~ ~ function g.j s

(2 . 2 4 )  R(t - s)v(s) ( I}(0 ,T;X) ( t o  [0 ,T] a . e . )

t
(2. 25) “ 5 R(t — s)v(s)ds R * v(t) L1(0 , T;X)

0

(2.26) 11m 4 JI R * v _ R  * vI J = 0.
K L~(i~,T;X)

~~~~~~~~ if V
K 

-. v ~~ L1(0 , T;X) ~~ K ‘. 0~ , then

(2 .2 7 ) lim h R  v — * V
K 

II = 0
l. (0 ,T;X)

~j~ Q~pa 2. 3. ~~~ ( H 1
) , ( H 2

) , (H 4
) , (H 5

) be sat~ j I~ d .  ~~~ S and S>~ be defined ~~ (2.  16i

~jj~~(2.2 l) respectively. T h n~~ pertiies (2 .22 ) - (2 .27) hQ~~~~ jJi R ~~2).~c.~dkx S 
~~~

replaced 
~~ 

S
K
.

~~~~~~~~ 
In Lemmas 2 .2  and 2. 3 the space X can be replaced by XA or X 2 without

A
changing the proof. Also if v , v

~ 
C L~(0 , T;X), p > 1, then the properties (2. 24) — (2. 27)

hold in L~(O ,T;X) . Moreover , in Lemma 2 . 3  one can replace L1(0 ,T;X) by C( [ 0,T ] ;X)

in the formu las corresponding to (2 .22 ) , ( 2 . 2 3 ) , (2 .25 )  — (2 .27) .

We only give the proof of Lemma 2 .2 .

First (2.22) is immediate from (2.17) by integration. To prove (2 .23 )  we observe from

(2.20 ) tha ’

(2. 28) H 
~~

(t)x H i a(t) lix ii (x X; t o [ 0, T I)

Next , we show

(2 .29 ) R
~

(t )x - .R(t)x (K -. ~
4
; x o  X; t [0 , T ) a .e .)

By semigroup theory, [19 J ,
~

wAx -~~~~~ +
a x — e  x ( K — 0 )

uniformly in on compact subsets of U~~, and so (2.28) holds by Lebesgue ’s dominated

convergence theorem . Thus (2. 23) follows from (2. 28), (2. 29), (H2), and Lebesgue ’s
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dominated convergence t heorem . By (2. 22) R(t - s)v(s), as a function of (s, 0, is measur-

able for 0 <
~ s <- t <T with values in X. By (2. 28) one has

(2. 30) HR
~

(t — s)v(s) Il < a(t — s) hb v(s) II ,

where by (l1~ ) a(t — s)hIv(s) II L1
(O , T;1R~) for t € [0 , TJ a.e . Thus one obtains (2. 24)

by letting K 0+ and by applying Lebesgue ’s dominated convergence theorem in (2. 30).

To prove (2.  25 ) and ( 2 . 2 6 )  we integrate (2.  30) obtaining

I t  T
f 5 hIR ~(t 

- s)v(s) hidsdt ~~ 5 a(t)dt Hvtl 10 0 0 L(0,T;X)

Therefore , (2 .25 )  follows from Fatou ’s lemma and (2 .26)  follows by again applying Lebesgue ’s

theorem. Finally, writing

R * v _ R
~ 

* V = (R * v _ R  * v) .f (R
x
* v _ R

x 
v ) ,

and using arguments similar to those employed above one obtains (2. 27). This completes

the proof of Lemma 2. 2.

We next establish the uniqueness of solutions of (1. 1) when A Is an unbounded

operator satisfying (H1
). -

Lemma 2. 5. Let (H1
) , (H 2), (H4) ~~ satisfied 

~~~ J~ 
U L1(0 , T;X

A
) 

~~ ~ strong so lution

2J the equation

u + a * Au = 0

Then u = 0 .

~~gof of Lemma 2. 5. For any K > 0 we have fro m the given equation and from (2.19) that

J
X

U + d * = 0 ,

or equivalently

U + a * A X u = u - J
~
u

By using the fact that Ax Is a bounded operator, together w ith the representation formula

(1. 11) wh efe A Is replaced by Ax ’ ~1 is replaced by u - J
X

U, arid R is replaced by
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and the uniqueness of solutions of (1.1) in the bounded case , we obtain

(2. 31) u = u - J
X
U - * A

K
(u - J u )

where R
~ 

is defined by (2 .2 0) .  We wish to show that u — J K
U and A K

(u — J K u) each

tend to zer~ as K 0~ in L1(0 , T;X) for U 0 L1(0 , T;XA). We have

T T T

5 lu — J K
U Il(t)dt = 5 K hiA

>~
u ll(t )dt -~~ 5 IlAu ll(t)dt

0 0 0

which tends t ’  zero as K — 0+ . Also

IIAx (L1 — J K
u) 11(t ) IA KXA Ku 11(t ) = II KA K J K v 11(t)

where v = Au; thus

IIA
K

(u — J K~
.
~
)
~~

(t) = ‘~ X~
’ — J K X

)Ho ) < liv — J K~~
H(t )  .

But

liv - J
~
v 11(t) ~ 2 liv hI (t) = 2 lIAu 11(t ) L1(0 , T) ;

moreovar ,

liv - ‘X ”11
~~ 

— 0  a.e. on (0 , T)

and therefore , by Lebesgue ’s theorem , A K
(u - J K

u) -. 0 as K 0~ in L1(0 , T;X) for

u L
1
(0 , T;XA). Letting K .0~ in (2. 31) and using the above facts together with (2. 27~ of

Lemma 2 .2 , we obtain u = 0. ThIs completes the proof of Lemma 2 . 5 .

We will complete the proof of Theorems 1 and 2 by f i rst  noting that Lemma 2. 5 est uUisne s

the uniqueness assertions in Theorems 1 and 2. To prove Theorem 1, part (i) , we shall pr eve

that R(t)x is a solution of equation (R) for x XA . We know that U
~~ 

R K
(t)x defined

by (2. 20) is the unique solution of the approximating equation associated with (R) :

(2. 32) U + a * A Ku K = a (t)x (0 < t < I, x XA
)

By Lemma 2. 2 and Remark 2. 4

(2. 33) U
K 

-. u = Rx in I}(0, T;X
A

) as K — 0
+
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where R is defined by (2. 15). Thus to pass to the limit in equation (2 . 32) as K - .0 k
,

suffices to show that

A
K U K 

— Au in L1(0 , T;X) as K

But A K u
K AJ Ku 

~~~ 

thus i t  suffices to show that J
K

U 
K 

— u in L1
(O , T;X

A ) as \ 0~~~ .

This is equivalent to showing that

(2~ 34 ) K A K U
K 

U
K 

- J K U 
~ 

— 0 in L’(O , T;X A
) as K -. 0~ .

But

I I T5 IIA~ uK (s) lids = 5 
~~~~~~~~ 

lids < 5 f lAu K (s) lids ~ lu 
K H 1 

< M
0 0 0 L ( O , T;X A

)

where M > 0 is constant and where the last inequality follows from (2. 33). This proves

(2. 34 ) and show s that R(t)x is a solution of equation R) for x X
A and for 0 ~ t ~ T. By

the uniqueness result of Lemma 2. 5 we identify R(t)x with R(t)x of Theorem 1 and thereby

prove (1.2). The a priori est imates ( 1. 3) , (1. 4 )  follow from Lemma 2 .2  and Remark 2 .4 .  This

completes the proof uf Theorem 1 (i) .

The proof of Theorem 1 ( ii ),  is similar using the approximating equation associated

with (S):

U
K 

+ a * A X u
K 

=

where U
K 

= s
~

(t) defined by (2. 21), and Lemma 2 . 3 .  This completes the proof of Theorem 1.

To prove Theorem 2 (i) it is suffic ient , by Lemmas 2. 2 and 2. 5, to show that u = R “ g

is a strong solution of (1.8) . To do this we consider t he approximating equation associated

with ( 1.8):

(2. 35) U
K + a * A

~
u
~ 

= a * g (g L1(0 , T;XA
))

We already know , since A
K is a bounded operator , that U

~ 
= R

K 
* g is the unique solu-

tion of (2. 35) , and by Lemma 2 .2  and Remark 2 .4

U
K — 

u = R * g in L1
(0 , T;XA) as K — 0~
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One completes the proof of Theorem 2(i) by letting K — O~ in (2 .  35) and by observing as

before that Ax UK 
— Au in L’(0, T.X) as K — 0 + . The estimate ( 1. 10) follows immediately

from its validity for U
~ 

= RK 
* g, together with Lemma 2 .2 .

To prove Theorem 2( u ) we consider the approximating equation a~~ ociated with (1. 1):

(2. 36) U
~~ 

+ a * AxUK = f .

We first take f = 1~ in (H6). Since Ax is bounded

U 1K = - * -

Is the unique solution of (2. 3( )  w~~~~ :~~~’1. We have that u lK L1
(0 , T;XA) and by

Lemma 2.~ and Remark 2 . 4

u
lK 

— u 1 f1 - R * A f 1 in L
1(0 ,T;X

A
) as K

As abo ve , Axu lK 
— Au

1 in L1(0 , T;X) as K -. 0 +. Thus letting K — 0+ in (2. 36) and

using Lemma 2. 5, shows tha t U 1 given by (1. 11) is a strong solution of (1. 1).

We nex t take f = f 2 in (H6), and we obtain (1. 12) by a completely analogous argument.

The estimate (1. 13) follows from form ulas (1. 11), (1. 12), together with the estimates (1. 4),

(1.6), (1.7). This complete s the proof of Theorem 2. 
-

—21—



3. A a Nonlinear Operator.

In thi s section we give a nonlinear analogue of Theorems 3 and 4 . Let X be a real

Banach space and let P c~ X be a c1o~ ed convex cone . Let A : D(A) L~ X — be a given,

possibly multivj luud , m—a cc ret iv e operator [ ( ; p. 13 ) ]  sat isfy ing the condition

( 3 . 1 ) (1 + KA) 1P~~~P (K >0 ) .

Let a sa t is fy  (H2
) and (H 4

) and let I sat is fy (113
). Consider the equation

(3. 2) u(t) 4 a * Au(t) ? l ( t )  t [0 ,TJ

w here T ~‘ 0. We say that u L1(0 , T;X) is a solution of (3. 2) on [0, 1] if there exists

w L1
(0,T ;X) , where w(t) C Au(t) a.e. , such that u(t) + a * w (t) = 1(t) a .e .  for

€ 10 ,TJ .

I~~orem 5. Let (H2
) , (H4 ) ]

~ 
satisf ied. 

~~~ 
f sat isfying (1~13) be li the!

every K > 0 , v , unique solution 2! ~~~ linear ~93~~tion

( H 7 ) (3 . 3 )  v(t) + K a  * v(t) f(t) t o  [0 ,T j a .e . ,

L satisf ies v(t) c P a.e.  ~~ (o ,TJ

l’or every K > 0 j~j  U K be the unique solution of ~~~ eq~1~t~Qn

( 3 . 4 )  u
~

(t) + a * Axt1~
(t) = f(t) t [0 , TJ a. e.

where Ax is the Yosida approximatiori of A. j i(3. l) i~~~~~~!i , ~ 
u~~(t) e P a .e .  Qjj

[0 , T J .  Moreover, if u is ~ solution of equation (3 .  2) 
~iich u = weak u rn  U

~ ~fl
1 X-= 0

L(0 ,T;X), SJ2.~Ji u(t ) p a .e .  ~~ [o ,T J .

j~em ark 5. 1. Under the assumptions of Theorem ~ it follows from Theorems 3 and 4 with A = Xl

that if 1(t) a * g(t) , g I}(0 , T;X), then (H7
) Is satisf ied if g(t ) P a. e. on [0 , T J .

If 1(t) = u0 + a * g(t), where u 0 € p and g Is as above , then (H7
) is satisfied provided

that (H5) holds. If I W~’ 
1(0 T;X) , then (H7

) Is satisfie d provided that (H5
) holds , and

that 1(0) p and f ’(t) € P a .e .  on [0 , 11.

Remark 5.2.  If A Is linear and satisfies (H
1
), equation (3. 2) is (1. 1); it was shown in

section 2 that the unique solution u of (3 .  4 ) converges to u, the unique solution of (1. 1),

under the assumptions of Theorem 2.
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Remar k S . t .  If X H a real Hilbert space and if A = ~~~ ‘, where ~‘ : H -‘ , ~ J i.

convex , 1.s.  c. an- i  proper , Barbu [1 ]  and London [ 1 3 1  est i ldish the ex i s te n r - r d  r~~u

ness of the solut ion u of equation ( 3 . 2 )  as a limit of solutions uK 
I-~~ u : l t 1 ( I1 ( 3. I~ , y e

t hat 1 huurum S can lI€’ applied to such a nonlinci r equation. A qener ili ~~d t  O f l  t f i~ La : i ~

when A is a maxima l monotone operator on H is carried out by Gr ip e r ~: - - r - ~ 1 J J .  It

should Lu noted that in the existence theory of [ IL [ 1 1 ) ,  and [ l 3 J  ~~0) > 0 an tini t is

essent ia l, w hi le in Th eorem 5 a (0 + ) = + c ~ is permitted.

Frouf of  Theore rri .~~~ Consider the equation (3. 4) wri t ten in the equivalent 1 1 - r u

(3 .  s) u
~ 

+ a * U
K 

I + a JK
UK

Define C L1
(O , T;X ) to be the unique solution of (3. 3) with X replaced by ~~~~. By (H~~

t
~

(t )  I a. e . on [0 , T J .  It is easil y checked using

r(t , ~
) + 

~ 
f a(t - a)r(a ,~~)da = a(t) and f

~
(t) = f (t )  - 5 r(t - ~~~, 

)t) )d~

that equation (3 .  c) is equivalent to the equation

L 0) U
K 

= I
K

(u
K

)

where

( 3 . 7 )  F (z )(t) = 
~ 

f r(t - 
1 

+ 1 (t)

Observe that FK maps L
1

(0 , T;X) into i tsel f .  We prove that some iterate of is a

str ict contraction in L1
(0 , T;X) . Indeed , from (3. 7) , (H2

) and the contraction property o~

(recall A is m-accret ive ) one has

( 3 . 8) iJF
~

(u)(t) - F
~

(v )( t)  II <
~~~ 5 ir(t - s , ~

) I Ilu(s) - v(s) lids .

Define b
~

(t ) = r(t , ~
) and b~(t) = b

~ 
* b

K 
* 4’ b~(t ), w here the convolution is

taken n times. Iterating (3.  8) n times we obtain
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( 3 . 9 ) IlF~(u)(t) — Fn (V ) ( t ) Il < b~ * lu — vi i
K K L ( 0 ,T ;X)

For any f ixed K choose nK so large that f bK
K (~ )do = K

~ 
I; then integrating ( 3 .  ,)

we obtain

(3.10) ilF ~~(u) 
- F

~
’(v) ll lu - v ii 1

L (0 , T;X) L (0 , T;X)

Thus ( ~~. L) (and by thu equivalence also (3.  4 )) has a unique solution u 1}(0 , T;X) given by

u r n  F~ (u 0) , for any u0 C L1(0 , T;X)

In particul-ir if u0 t) P a .e .  on [ 0 , T J and if assum ptions (H 4 ) and (H_)  are sa t is t i e d ,

then by ( 
~~
. I) anu ( 3 . 7 )  F

~
( U

0
) ( t )  P a .e .  on [0 , T J and the sar1~ holds for F~ (u0

)(t)

for every n. Consequently the unique solution of ( 3 . 4 1  u
~

( t )  ( P a.e. on [0 ,T]. This

completes the proof of Theorem 5.

Remark 5. 4. From the proof of Theorem 5 it is clear that Theorem S provides an alternative ,

and in f act  s im~ ler , treatment of Theorems 3 and 4 in the linear c i~;e. However , in the

linear case T h e o n r y  I and 2 provide explicit representations fur tL~ o per i t  is R and S

and hence more info rmation about the solution . Moreover , the m rtf i c d of ~:ruuf of Theorem 5

can be used to analyse more general situations. For example , let X be the product of a

Banach spaces X1, X2 , . . . , X , and interpret equation (3 .2 )  as a system of n equations

with u(t) , 1(t) X for (0 , TJ and the kernel a being a n X n matrix satisfying

(H
2
) componentwise , and such the associated matrix re’rilvent r(t ,K) 

~ 
0 componentwise

(analogue of (1~14
)). Let P be a closed convex cone in X and let A be a m-accretive

operator on X kr a suitable norm satisfying (3. 1).  If f satisf ies (H 3) and (H7 ), then

the conclusions of Theorem 5 hold.

Rem~ rk 5. 5. The proo f of Theorem S is in the same spirit as the proof of Theorem 1 of Weis [17 1

for the equation

t
x(t) = f(t) 4 5 a(t — s)g(s,x(s))ds

0
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where x , 1, g have values In 1R’~ and a is a n X n matrix L~~~(0 ,~~) and where g

has ‘ separated structure ’ in the sense that g(t , x) = col(g
1
(t ,x1

)) , = 1,... ,n, where each

Is locally Lipschitz with respect to x~ uniformly for t bounded. Weiss gives a condi-

tion whic h corresponds to (H
4

) and (H 7) which insures that the solutior x(t) > 0 for as

long as it exists.
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4 . Examples.

Example 1. This example is an application of Theorem 5. Consider the equation

(4.1) u(t, x) + a * (-~~
2
u(t , x) + ~3(u(t , x)) ? f(t , x)

o <t  <~~~ , x Q , a bounded open set in with smooth boundary r with u satisfying

Diric hlet boundary conditions on r. ~3 is a maxima l monotone graph on IR X J~ with

0 p(0). For simplicity we assume that the kernel a is completely mnonotonic on [0 , ce ) ;

thus (see Remark 1. 3) assumptions (H2), (H4), (H 5) are satisfied on [0 , TJ for every T > 0.

We assume I W~’
2 

(0 ,~~;X), X = L2 (t� ).  To see that equation (4.1)  is a particular case

of ( 3 . 2 )  def ine

(4 .2 )  Au = — v ~
2u + ~3(u ) with D(A) = {u W

2’ 2(Q) fl w~’ 2(Q) : ~ (u)  L2U1) }

As is known, see Brezis [4 ] ,  A is the subdi fferential of the convex, 1. s.c. , proper

function ~ : L
2V?) — (~~ xr , +~~) defined by

1~ f~graci u)2 dx +5 j(u)dx if u € W~’ 
2
(~~) j(u) L

1
(c?)

J ci

otherwise

whe re j is the unique , convex, l .s.c .,  proper function mapping IR into ~ -°° , + -~ J suc h

that j (O) 0 and 
~ 

= 8j .  Thus A is maximal monotone on the Hubert space L2(Q)

and hence A Is m-accretive. Thus (4. 1) with the boundary condition u = 0 on r is a

particular case of (3 .2) .  Let f € W~’ 2 (O , oo;X) ; in particular , 11 C[0 ,00;X ) and f (0)

is well defined as an element of L2(cl ). We assume that 1(0) w~ 
2
(e) and

f,(f(0))dx <~~~~. These assumptions on I Imply that (H 3), (H 6) are satisfied. It is now

easily checked that all the assumptions Londen [13; Theorem lJ or Barbu [ 1, Theorem 11

are satisfied and therefore , (4. 1) possesses a unique solution u on [0 , T] for every

T > 0 in the sense of the definition given following equation (3. 2) above . Moreover ,

u = u r n  
+ 
u
~ 

In L1
(0, T;X) (even In L2(0, T;X)) for every T > 0, where U

~ 
is the

K — 0
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unique solution of the approximating equation ( 3 . 4 ) .  We shall apply Theorem 5 with

P = L~(c2). It is well known that the operator A defined by (4 .2 )  satisf ies condition ( 3 . 1 ) .

Therefore , if we require that condition ( H7 ) is satisf ied — this will be the case. For ex~u r p I ’ - .

if 1(0) P .~nd f ’ ( t)  P a.e .  on [0 , ~
) (see Remark 5.1) , then the solution u1 t) ~i

(4.1) is nonnegative a.e . on (0 ,~~).

Example .~~ This example is an application of Theore m 4 ( i i i ) .  Let ~2 be a bounded o ; C r r

set in IRn with smooth boundary r. On 17 we consider the linear second order

differential operator

Au — 

i,~ =1 
~~~ (a . .  ~~~~ + 

i~~1 
~~~~a . u) + Cu

where a ., a . C1(f2 ), C L~ (c2) ,

aa .
c � o , c +~ 

j.._L >o a .e. ,
I I

and for some positive constant a

L a
1~~1~ 1 

� a kI
2 a .e . , ~

I,J= l

We define D(A) = w 2 , ~~~ ~ W~’ ~~~ It is known (see [ 5 J )  that A satisf ies ~H,) wi :h

X = L2 ( cl). Consider the equation

(4 .3 )  u(t) + a 4’ Au(t ) = u0, 
t [0 ,T~

where u0 L ( f2) and where a satisfies assumptions (H2), (H4 ), (H 5) on [0 ,T J .

Equation (4. 3) has a unique weak solution u (see Remark 2. 3); moreover , if U
0 

0

then the solution u is strong . Let I be a con vex 1. s .c .  proper function: IR -. [0 , -
~ I

with 0 o 8~(0) , and we f ix ~(0) = 0. Define ~r — [0 ,ool by

f f J (v)dx if j(v ) L1(17)

,(v) =

+00 otherwise
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Then by [5, Lemma 2J we have (A
~
x,y)> 0 for every [x,yJ C aq’ and for all K >0.

Moreover , by [ 3 ;  Theorem 4 . 4 )  (1.21) is satisfied. Consequently, by Theorem 4(iil), If

j (u0) L’(17), one has

f j (u(t))(x)dx < f j (u~ )(x)dx , t € [0 , Tj

In particular , if j(u) = J u f ~~, 1 < p <~~~ , one obtains

(4.4) IIu(t) II .
~~ 

Iiu~ H
L~ ( c l) L~(c2 )

if u
0 

€ L~( c?). Note that the case p = ~ can be obtained by passing to the limit. Inequality

(4. 4) can be obtained directly from Theorem 1, inequality (1. 6), if one uses the known that

A satisfies (H1) with X = L~(Q), 1<  p < 0 0  see [ 5 ;  Theorem 8 and remarks preceding).

Ex~mp1e 3. This example is an application of the linear theory developed in Theorems l-~

to a nonlinear problem. Let 17 be a bounded open set in U~ wit h smooth boundary r . Let

-. IR , ~(o) = 0 , ~ continuous and nondecreasing. Assume that the nonlinear elliptic

equation

2(4.  5) —V u = V(u) , U 
~~
. = 0

has a nontrivial, posit ive solution u C L~’(c2 ) . Let a satisfy (H2), (H4), ( H5
) , for every

T > 0 and conside the nonlinear integral equation

( u(t) + a * (-V 2 u - ‘14U))(t) = u0 ~O < t  < 00 )
(4 .6)  11~ u~~~ L

00
(cz), u = 0  on

Let Au = -V 2u with D(A) = (u W~’
2(Q) (1 W 2 ’

2(c? ) ). Let X = L2(i1). Then A satisfies

If u is a solution of (4.6) in the sense that g = y(u) c L
00

(0 ,oo;X) and u is a weak

solution (In the sense of Remark 2. 3) of the equation

u(t) + a * Au(t) = u
0 + a * g(t), t c (0, TI a. e., VT > 0

then by Theorem 2 it is easily shown that u satisfies the nonlinear functional equation

(4 .7)  u(t) F (u)( t) (0~~ t< 00 )
0
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where
-4

(4.8) F (u)(t) = S(t)u 0 + R *
U
0

We prove the following result about solutions of (4. 7) , (4. 8).

~~eorem 1-. Let (H
2

) , (H
4

) , (H
5
) be satisfied for every T > 0. For every u0 X 

~~L~~ 1’~~
j

0 <u0 <u , the equation (4.  7) , (4. 8) has a positive maximal solution UM L
00

(0 , ‘;X)

~~~~~~~ ttive minim al solution u L (0 ,~~;X) , u L (0 ,~~;X) ~~~~jy

solution 
~
j (4.7), (4.8), then

(4.9) 0 < u (t) < u(t) 
~ 

uM(t) < u~~ a .e .  on (0,~~)

Remark 6. !. If U 0 L
00

(0 ,ao;X) i sa  solution of (4 .7 ) ,  (4 .8 ) ,  then it is easi ly checked that

u is a solution of (4 .6 )  in the sense defined above . Note that if the solution u L~
’
~ O , -~r ;X)

satisfies the estimate (4. 9), then u L
00
(0, ~ ;L

00
(iI)), and thus ~( u )  L

00
(0 , =~ ;X) , as

well as ‘y(U) 0 L1(0 ,T;X) for every T > 0 .  These observations are needed for the definition

of weak so lution .

Remark 6. 2. Theorem 6 also holds if the requirement y nondecreasing is rep laced U ‘, u)

nondec reas ing for some p > 0. To see this replace -V 2u by -72u + pu and repluce

y(u) by pu + ‘y(u) in (4.  5) , (4 .6 )  and apply the above analysis.

Remark 6 .3 .  Comparing equations (4.1) of Example land (4.6)  and taking 1(t) e u
0 

in (4 . l ,

u0 
€ L~(Q) we note that if ~3 is single valued and continuous , equations (4.1) and (4.6)

differ only by the sign of the nonlinearity. For equation (4.1) one has existence and uniqueness

of solutions on (0 ,00) for every u0 
c L~(c� ). By contrast , for equation ( 4 . 6 )  it is known

that if equation (4. 5) has u = 0 as the only nonnegative solution, then equation (4. 6) can

have a positive solution only on a finite interval (0 , T) . For exam ple, if n = 3 and

¶y(u) u5
, it fo llows from [16 , Remark 3. 27 1 that if fi is star shaped, then (4.  5) has u = 0

as the only nonnegative solution. Taking a(t) 1, applying [10 , Theorem 2. ( and Remark 2.7),

and assuming that u0 > 0 and that
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f u~(x)~~(x)dx �

where is the smallest eigenvalue and the corresponding unique eigenfunction > 0 in 12:

_\J2~ = K
0 4~0 

in 17, 
~0I r 

0

then the unique nonnegative solution u of (4. 6) exists only on a finite interval.
00

~~rgof of Theorem I. Let E = L (0 ,00;X) with the usual ordering (i.e. u ,v E,

u < V  <=>  t ( t ,x) < v (t,x) a.e . in (t,x) 0 (0,00) x ti, where ~ arid are elements of

the equivalence classes u and v respective ly) . In E let I denote the interval [0 , u )

in the sense of order in E. It can be shown t hat I is a complete lattice with respect to

this ordering . For every t I we define the function F
~ 

by
0

F 1~ (u)( t) = S(t)u 0 + R *
0

where

(y(u) if ~~~~~ IiU
00

ll 
00

— J L ( c ?)
‘y(u) =~~

I Hu H otherwiseI 00 00
‘- L (c? )

In place of the function F defined by (4.8) .  Then F satisfiesU
0 

U
0

(4.10) F : 1 — I
U
0

and

(4.11) F
~ 

is mono tone (u , v I and u ~ v => F (u) ~ F (v))
0 U

0 
U
0

Let u € 1. Then, by Theorems 3 and ~~, 
~~~ 

(u) > 0. Moreover, by the fac t that
0

u = Su + R * ‘j(u ) we have00 00 00 ’

F (u) = Su0 + R * (u) <Su0 
+ R * y (u ) S(u

0 
— u

00) + U
00 ~ u ;  which proves (4.10).

-30 -



Clearly, (4.11) is evident from Theorem 3. By [ z , Theorem 11, p. 115), the opera tor F hasu0
a least and a greatest fixed point in I, which correspond respectively to the solutions u

and UM~ 
since U

rn ~ 
UM ~ 

u
00 

and therefore , 
~
(U
m
) = 

~
‘(um

)
~ ~~~~~ 

= y(u M), and so

F ( u ) = F ( u ), FU0
(uM) = PU0

(UM
). This completes the proof of Theorem ( .

—3 1—



~ppendix I

An assumption which has been used frequently in the literature concerning the kernel a is

a(t) C(0 , T) , a(t) > 0, t (0, 1), and

(A1) 
..~~ t) 

nonincreasing as a function of t for eac hI a(t + a )
g > 0 , 0 < t + o < T ,

see Friedman [ 7 ) ,  Levin [ 12 ) ,  Miller [ 1 4 ) .  We shall prove that condition (A1) is equivalent

to the condition

(A2) a(t) I C(0 , T), a(t) > 0 t c (0, T) and log a(t) convex on (0, T)

Moreover , we first prove a preliminary result.

Lemmp 1. 
~~~ pssump ti on (A 2

) be sat isf ied. Then for every v .‘ 0, ~~~ exists ~ f~pction
a ~~tisfying (A 2

) ~~ a C1
[ 0, Tj ,  

~~~ a ( t ) t a(t) ~~ v 0~ for t (0, T).

Proof. Define b : IR - (-00,400] by

log a(t) if t € (0 , T)

- 
) b(0) = lim 

+ 
log a (t), b(T) = Urn 

- 
log a(t )b(t) - 1 t — o  t — T

+~ 0 if t 3 [ o , rJ

Observe that a(t) > 0 on (0 , T) and the definition of convexity of log a(t) on (0 , T)

excludes a(0 + ) 0 and a(T ) = 0. Thus b Is convex, l .s .c .  and proper on IR. Define

b, v >0, to be the ~oslda approximation of b; then, see [3 ;  Proposition 2.11),

b (t) = mm {
~~ fy  — t 1 2 

+ b(y)J, t € JR
JR

and b C1(JR ) , b’ satisfies a Lipschitz condition on JR with constant 1; moreoverV 
b V

b (t) ‘ b(t) as v i 0~ , t JR. Define a = e “ and the result follows. This completes the

proof of Lemma 1. Using Lemma I we shall prove

Lemma 2. The conditions (A
1

) and (A
2

) are ~q~~va1ent.

~~~~ 
That (A

1
) > (A

2
) follows fro m

aft) 
> ~~t + ~~) 

(0 < t < t + u , t + T < t +a + T < T ) ;a(t + ~) — a(t 4 T + a)
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using a(t) > 0 and putting a = T we obtain

a(t)a(t + 2T) ~ a 2 (t + ~r)

Thus putting t
1 = t , t

2 
= t + 2i~ we have

____ 1 1log a — 

2 < log a(t 1
) + log a(t 2 )

We note that In [12; calculation fcllowing Theorem 1. 3 ) it is only shown that (A
1
) => a t )

convex , with the additional assumption that a is nonincreasing, which is not used. Of

course, log a(t) convex implies a(t) convex.

To prove that (A2) ==> (A
1
), it is sufficient by Lemma 1 to prove (A 2

) => (A
1) with the

additional assumption a C’ [ 0, T I. Then log a(t) convex implies

a ’(t + ~~~ (0  < t < t + a < T)a(t) — a(t + o)

Using a(t) > 0 we then have

.~~~ alt) - alt + a)a ’(t) - a ’(t + cr )a(t ) odt a(t 4 0) 
— 

a2(t + a) 
—

which completes the proof of Lemma 2.

Proof pf Proposition 1. By Lemma 2 it is sufficient to prove Proposition 1(i) under assumptions

(A1) and (H2). If, in addition, a C E O , T], Proposition 1(i) follows directly frL .~ [14 ,

Theorem 1) with h = f = a and g(x ,t) = x .

Let a satisfy assumptions (A )  and (H ). Consider the functions a of Lemma 1.
1 2 V

Then by the above remar k , the functions r (t ,K ) � 0, t c [0, TJ, for every K >0 , v >0 ,

where r (t ,K ) is the resolvent kernel associated with Ka (t).  The functions a converge

to a in~ L’(O , T) as v I 0~ , since a (t) t a(t) as v 0~ and a L
1(0, T). Therefore,

it is easily checked that the functions r ( ~ ,K ) converge to r(~ ,K) in L1(0 ,T), where

r(t, x) is the resolvent kernel corresponding to Ka(t), and r(t , K ) � 0 on [0 , TJ a. e. This

completes the proof of part (i).
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Part (ii) Is proved In [8; Lemma 2. 5) wIth h = Ka (see also [12; Lemma I. 3) with

f ~ 1), where the proof is carried out on (0, 00); thIs can be applied by extending a(t)

as a constant on [T ,00). This completes the proof of Proposition 1.

i
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